

KAN Position Paper on EN ISO 8041:2005: "Human response to vibration – Measuring instrumentation"

Contents

1.	Introduction	3
2.	Problems associated with the application of EN ISO 8041	5
3.	Proposal for practicable verification testing of vibration instruments according to EN ISO 8041 – reduced verification test (intermediate test)	14
	3.1. Introduction	14
	3.2. Test procedure for the "reduced verification test"	15
	3.3. General content of the measurement programmes	16
	3.4. Parameters for measurements for mechanical calibration of measurement chains	17
Ann	ex: Experts involved	18

The "Commission for Occupational Health and Safety and Standardization (KAN)" project is financially supported by the German Federal Ministry of Labour and Social Affairs (BMAS).

Authors:	Experts from all interested parties, managed by the Commission for Occupational Health and Safety and Standardization (KAN), see Annex
Published by:	Verein zur Förderung der Arbeitssicherheit in Europa e.V. (VFA)
Editor:	Bettina Palka Commission for Occupational Health and Safety and Standardization (KAN) – Secretariat – Alte Heerstraße 111, 53757 Sankt Augustin Tel.: +49 2241 231-3462 Fax: +49 2241 231-3464 E-mail: info@kan.de Website: www.kan.de

Published: June 2010

1. Introduction

Owing to the EU Vibration Directive 2002/44/EC, which has now been transposed into national laws and regulations, measurement of vibration exposure at workplaces is becoming increasingly important. Measuring instruments conforming to EN ISO 8041 must be employed for the measurements required for risk assessment in accordance with accepted good practice. This requirement is derived from the EN ISO 5349-2 (Mechanical vibration - Measurement and evaluation of human exposure to hand-transmitted vibration - Part 2: Practical guidance for measurement at the workplace) and ISO 2631-1 (Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration -Part 1: General requirements) measurement standards specified in the EU directive, which respectively require and recommend the use of a measuring instrument conforming to EN ISO 8041. Also, numerous test standards for the determining of vibration emission, such as ISO 20643 (Mechanical vibration -Hand-held and hand-guided machinery - Principles for evaluation of vibration emission), make reference to EN ISO 8041 with regard to the requirements placed upon the test and measurement equipment.

EN ISO 8041 specifies characteristics and tolerance limits for instruments employed for the evaluation of human exposure to vibration, and contains provisions for a multi-level system of traceable calibrations and tests. These extend from pattern evaluation and periodic verification testing to in-situ checks. In-situ checks are often described in the measurement standards as calibration prior to measurement.

Development of the standard began as early as 1977. The ISO/DIS 8041 draft standard was published in 1984 and the European prestandard ENV 28041 in 1993, with an amendment in 2001. The development from analogue to digital technology necessitated a comprehensive revision in 2005. This revision remains the current version and is based primarily upon Parts 1 to 3 of the EN 61672 sound level meter standard. This is the reason for certain provisions in the standard not being beneficial or entailing considerable cost in their implementation.

In addition, the market has responded more swiftly than the standards sector, and now offers a large number of dosemeters of varying quality, particularly for

3

whole-body vibration. As yet, EN ISO 8041 does not contain provisions governing dosemeters. As a result, simple vibration indicators which are sold as dosemeters may result in the risk being underestimated.

In the light of this issue, OSH experts from all stakeholders met under the overall lead of the Commission for OH&S and Standardization (KAN) in order to obtain the opinion of the OSH sector on potential problems associated with the application of EN ISO 8041. The points of criticism and proposals for improvement expressed in the discussions between the experts are summarized below.

In order to provide users with a proper, consistent guide to the application of EN ISO 8041 until the desired revision of ISO 8041 – the underlying international standard – a reduced, practicable verification test (intermediate test) is also described in the annex.

Text in EN ISO 8041 Criticism Explanation Figure 1 — Overview of the The schematic illustrations The requirements and test basic functional path output of a vibration meter are too conditions vary as a function of of a vibration measurement restrictive for modern the technical form taken by the instrument or measurement vibration measurement instrument. In instrumentation system systems; e.g., IEPE systems employing IEPE transducers normally do not transducers, the integral give access to the internal preamplifier within the transducer pre-amplifier, so that is not tested electrically. The testing via Key 5 in Figure 1 electrical input (No. 5) is not does not include the preaccessible in the case of IEPE transducers. As a result, overload amplifier. Declare them as "examples". indication, band limiting and linearity cannot be tested in this case in the first section of the signal path. Table 1 — Reference Calibration check For whole-body vibration in frequencies within ISO vibration values and particular, the test frequency is frequencies 8041 must be brought into too low; a second frequency should be permitted as an Hand-transmitted: only line. 500 rad/s (79,58 Hz) Low-cost calibrators for the alternative (e.g. 200 rad/s = Whole-body: 100 rad/s calibration check fre-31,85 Hz), as with hand-arm (15,915 Hz) quencies stated, particularly vibration. The provisions in the Low-frequency whole-body: for 15,915 Hz, are not measurement standards 2,5 rad/s (0,3979 Hz) available on the market. governing "in-situ calibration" Table A.1 Only the following require that a transportable Hand-arm: 79,577 Hz and frequencies should be instrument be available. The level 159,155 Hz employed for reference and of the test amplitude should lie in calibration check signals: the mid-range of the Hand-arm 1 000 rad/s, measurement range. "In-situ whole-body 200 rad/s with calibration" for the low-frequency adjustment of the test range of 0,3979 Hz is unrealistic procedure. and may be possible only during Table 1 and Table A.1 Unrealistically low laboratory testing (refer also to Hand-arm: 10 m/s² the comments on testing and calibration amplitudes are Whole-body: 1 m/s² calibration, see page 9). specified.

2. Problems associated with the application of EN ISO 8041

Text in EN ISO 8041	Criticism	Explanation
5.6 Frequency	The requirement for a	In digital technology, separate
weightings and	band-limiting filter and a	band-limiting and weighting filters
frequency responses	separate frequency	are not necessary.
	weighting filter is	
	restrictive.	
5.7 Amplitude linearity	The stated linearity error of	A further requirement is that
Over the full extent of all	6 % is too strict a	concerning the amplitude
the measurement ranges,	requirement, since with the	linearity, including that of the
the linearity error shall not	fourth power-based	accelerometer. Since, in practice,
exceed 6 % of the input	vibration dose value (VDV),	the transducers must be adapted
value.	it is extremely difficult to	to the measurement tasks,
	remain within the linear	observance of the requirement is
	operating range.	difficult, particularly for the low-
		frequency range.
5.7 Amplitude linearity	Charge amplifiers do not	As explained under Point 1, the
On the reference	possess the required linear	scope for the testing of
measurement range and at	operating range of 60 dB in	instruments with IEPEs is limited
the reference frequency,	all measurement ranges.	owing to the technical constraints.
the linear operating range	Where measurement	Where measurement ranges are
shall be at least 60 dB.	ranges are switchable, "at	switchable, a minimum
	least 40 dB" is sufficient.	requirement of 40 dB with an
	Transducers with integral	overlap of 20 dB is perfectly
	charge amplifiers (IEPEs)	adequate. A minimum
	would have to be tested	requirement of 60 dB would
	mechanically over 60 dB,	effectively rule out the
	since the electrical input of	combination of piezoelectric
	the charge amplifier is not	accelerometers and charge
	accessible.	amplifiers. Charge amplifiers offer
5.7 Amplitude linearity	Overlap ranges must be	considerable benefits for many
For instruments with	reviewed; on manually	measuring chains, particularly
multiple and manually	selected measurement	those used for laboratory tests.
selected measurement	ranges, they are too great;	A further requirement is that
ranges, the overlap of	recommendation: at least	concerning the amplitude
vibration values indicated	20 dB.	linearity, including that of the
on adjacent measurement		accelerometer. Since, in practice,
ranges shall be at least		the transducers must be adapted
40 dB.		to the measurement tasks,

Text in EN ISO 8041	Criticism	Explanation
		observance of the requirement is difficult, particularly for the low- frequency range. The transducers available on the market and suitable for such measurements possess a typical amplitude frequency response error in the relevant frequency range of 5 % with respect to the calibration point. At a required linear operating range of 60 dB and in conside- ration of the above amplitude response, this would require an error over the entire measure- ment chain (calibrator, sensor, instrument) of approximately 0,001 % of the full-scale value of
5.9 Signal-burst	It is essential that the	the measurement range. The reason for the start times
response Fig. 2	measurement does not start <u>within</u> a signal burst, therefore a pre-trigger (start time, Key 2 in Figure 2) is specified. However, there is no requirement given for a synchronizing feature. Give requirements for a synchronizing feature (interface) between the vibration meter and a signal generator. Or make sure by other, simpler means that the measurement starts well before the 1st signal burst begins.	(0,2 s, 1 s, 40 s) required here is that the settling times of the integral filters within the instrument should generally be allowed to pass. For this purpose, however, synchronization with the signal generator is absolutely essential. Such a function is, however, not required anywhere else. It is not justifiable to force the manufacturer to provide this function purely because of this test item.

Text in EN ISO 8041	Criticism	Explanation
5.10 Overload indication	Measurements need not	During very long measurement
When a vibration meter is	always to be discarded if	durations, it can be useful to
used to measure running	short overloads took place.	know the number and duration of
r.m.s. time-weighted	It is, however, up to the	the overload conditions, since
vibration values, the	measuring personnel to	they provide an indication of the
overload indicator shall	decide on the validity of the	validity of the measurement
remain on while the	measurement.	result.
overload condition exists	Add a Note: It is useful that	
and for any period during	the vibration meter is able	
which the overload	to indicate how long (in	
condition affects the	relation to the	
displayed measurement (a	measurement duration) in	
period equivalent to the	each channel overload took	
integration time for linear	place.	
running r.m.s. acceleration		
values or twice the		
integration time for		
exponential averaging).		
5.10 Overload indication	The duration of the	
Following the overload,	overload indication should	
the indicator shall remain	be formulated as a	
on for a further 1 s for	minimum value as in 5.11.	
hand-arm vibration, 8 s for		
whole-body and low-		
frequency whole-body		
applications.		
5.13 Running r.m.s.	For human eyes, it is	
acceleration	impossible to read decay	
Table 10	times of (0,124 \pm 0,005) s.	
	Actually, an electric output	
	equivalent to the display is	
	not compulsory (see 5.3).	
	Explain how the	
	measurement is to be	
	performed.	

5.16 Electrical cross-talk Where an instrument provides simultaneous	The mechanical cross-talk	The requirement is tested only
signal inputs for more than one axis (or channel) of vibration, then the response on any one channel to a signal on any of the other nput channels shall be less than 0,5 % of the input signal magnitude.	of triaxial transducers normally is higher than 0,5 %. Give some information concerning transducer- internal cross-talk of multi- axial transducers.	electrically, and should therefore be limited to the electrical part. For triaxial accelerometers, the limit value should be specified separately, e.g. < 5 %.
11 Testing and calibration	Measurement systems often consist of several components which can be tested separately. IEPE transducers, for instance, are an example of components for which only a "global" test result can be achieved. Give an advise how to calculate the total error of a measurement system consisting of n components: $\varepsilon_{tot} = \sqrt{\sum_{i=1}^{n} \varepsilon_i^2}$ Additionally, a calibration of the complete measurement system with one amplitude and at one frequency shall be performed.	Regarding the verification tests: The requirement/effort entailed for verification tests is too great In consideration of the diversity instruments, these are likely to b once-off approvals. It may therefore be feared that the time expenditure required for verification testing and the associated costs will be very hig This could entice many users to forgo regular verification testing or could result in increased costs for the entire measurement, sind these costs are added to the fina charge. Given that even the manufacturers do not consider this outlay necessary, it is doubtful whether users will actually observe the statutory minimum requirement. Regarding <u>in-situ checks:</u>

Text in EN ISO 8041	Criticism	Explanation
		market (as is already mentioned
		in the standard). Manufacturers
		state that such calibrating devices
		could be fabricated, but that the
		low production runs would make
		them unreasonably expensive.
		The consequence would be either
		that such calibrations would not
		be performed, with a detrimental
		impact upon the quality of
		measurements, or that the costs
		of measurements would rise
		significantly.
		It must also be pointed out that
		measurements are not generally
		performed under "laboratory
		conditions", but under industrial
		conditions. The calibration devices
		should therefore not only be
		affordable, but also robust, easy
		to transport and easy to operate.
		The alternative solution referred
		to in the standard is in our view
		not practicable and could
		generally not therefore be
		performed.
		(Refer to the alternative
		calibration frequency for whole-
		body vibration of 200 rad/s =
		31,85 Hz, Table A.1)

Text in EN ISO 8041	Criticism	Explanation
Table 13 Summary of	The scale of verification	A proposal can be found in the
performance	testing is too great,	annex of this position paper. (see
characteristics and test	involves too much effort	page 14)
requirements	and is therefore too	
	expensive; a reduced	
	verification test	
	(intermediate test) should	
	be included as a fourth set	
	of tests in a dedicated	
	section and in Table 13, and	
	the reasons for its	
	performance stated in	
	Clause 11.	
12.3 Submission for	The pattern evaluation	For hand-arm vibration, in
testing	applies only for certain	particular, different
The vibration instrument	combinations of transducer	accelerometers need to be
shall be submitted for	and instrument.	employed according to the item
testing together with its		under assessment. Equally, the
documentation and all		transducers are the only items
items or accessories that		requiring more frequent
are identified in the		replacement, owing to mechanical
instrument documentation		wear. Separate calibration of the
as integral components of		accelerometer and the electrical
the complete instrument in		part of the instrument is therefore
its configuration for normal		the only practicable solution. This
use. Examples of additional		permits more frequent verification
items or accessories include		testing of the transducers, since
an accelerometer, mounting		they are the only parts subject to
device and cable.		mechanical wear.

Text in EN ISO 8041	Criticism	Explanation	
12.10.1, 13.9 Electrical	"Specified lower boundary"	How the "lower boundary of this	
tests of amplitude	is ambiguous.	measurement range" is to be	
linearity	Define "measurement	specified is not defined. From 3.1,	
On the reference	range" in Clause 3 and	it could be understood that the	
measurement range, the	clearly distinguish from	lower boundary of the linear	
value of the test frequency	"linear operating range".	operating range is meant here.	
input signal shall be		This would also be logical.	
increased in the increments			
specified in Table 14 from			
the specified lower			
boundary of this			
measurement range up to			
the input signal value that			
causes the first indication of			
overload.			
12 Pattern evaluation	The performance of some	For example 5.13: Table 10	
13 Verification test	tests is not formulated	requires that following switching-	
	clearly, making them	off of the signal at the input, it be	
	ambiguous, for example	checked that the displayed value	
	5.9, 5.13, 12.10.1, see	has decayed to 10 % of the initial	
	above.	value within (0,124 \pm 0,005) s.	
	Section 13.3, final	This test cannot be performed,	
	sentence: "vibration	since sensible refresh rates for	
	transducers are similar".	the display are in the order of	
	"Similar" is not defined	(0,2 to 0,5) s.	
	more closely.	In addition, a verification test	
		approaches a pattern test in	
		extent.	
		If it is assumed that the majority	
		of users possess multiple	
		transducers with different	
		properties for different	
		measurement tasks and that each	
		verification test is valid for only a	
		single instrument/transducer	
		combination, the costs of a	

Text in EN ISO 8041	Criticism	Explanation
		verification test can rapidly be expected to exceed the purchase costs.
Annex B Frequency weightings	The tolerances of the weighting filters are unnecessarily low, for example for IIR filtering, and are in conflict with a 4- digit display.	
Table E.1 Vibrationtransducer specificationsMaximum unweighted shockacceleration30000 m/s²(up to 50000 m/s² forpneumatic hammers)	The shock duration T should be stated as $T \ge 5/f_n$, where f_n is the resonant frequency of the transducer when mounted in accordance with ISO 5347-14 "Methods for the calibration of vibration and shock pick-ups – Part 14: Resonance frequency testing of undamped accelerometers on a steel block". Insert Note 3: The overall dynamic range can be covered by multiple accelerometers.	This criticism may not be relevant, since the annexes in question are informative only.
Table E.1	Transducer manufacturers do not always give the sensitivity at the reference frequencies acc. to ISO 8041. Add a row "Sensitivity at the relevant reference frequency acc. to Table 1".	

3. Proposal for practicable verification testing of vibration instruments according to EN ISO 8041 – reduced verification test (intermediate test)

3.1. Introduction

With respect to calibration and testing of a measuring instrument according to EN ISO 8041:2005, distinction is made between three cases.

A.) Pattern evaluation

"...tests necessary to demonstrate conformance of a vibration instrument to all mandatory specifications of this International Standard, along with the test methods to be used."

B.) Verification test

"...details of the tests necessary for verification of conformance of a vibration instrument to the specifications of this International Standard, together with the test methods to be used." "...periodically (e.g. ... every 1 or 2 years thereafter)"

C.) In-situ check

"In-situ checks are intended for application in the field prior to or following a measurement or series of measurements. They act as a check of the instrument's basic calibration and functionality."

The scope of testing in each case is listed in EN ISO 8041, Clause 11, Table 13, "Summary of performance characteristics and test requirements".

"Pattern evaluation" encompasses all tests necessary to demonstrate compliance of a vibration instrument with the technical requirements of this standard. It will generally be performed by the manufacturer before the instrument type is placed on the market.

The "verification test" describes regular calibration of the vibration measuring instrument, as is generally commissioned by the end user of the instrument from a test laboratory (calibration laboratory). The verification test encompasses the greater part of the tests required for the pattern evaluation. Owing to the technical diversity of the instruments available on the market, automation of the necessary measurements and verifications is virtually impossible. The measured values must therefore be recorded and documented largely manually, which is very time-consuming and correspondingly expensive.

"In-situ testing" describes a function check by the end user of the instrument prior to the performance of measurement. A further, simplified, practicable "reduced verification test" ("intermediate test") is proposed below which has the objective of identifying an instrument which is adequately calibrated for the intended applications and is suitable for the purpose, at a cost reasonable for the calibration laboratories and affordable for the end user.

This simplified test procedure is described below as a reduced verification test (intermediate test).

3.2. Test procedure for the "reduced verification test"

A simplified test method is proposed in this section. This test method is based upon the current EN ISO 8041 but limits its tests to the needs corresponding to the specific applications of the end user.

In order for the effort of testing to be reduced, it is assumed that an end user does not generally use the full measurement scope of an acceleration measuring instrument according to EN ISO 8041, but only a limited range of applications. For three typical applications, measurement programmes are therefore proposed for calibration and verification testing which contain only the tests of the vibration measurement instrument which are relevant to the application concerned.

- Each test procedure comprises the mechanical test of the accelerometer and instrument, constituting a measurement chain together with suitable weighting filters for the application in question.
- The test conditions are based closely upon EN ISO 8041.
- The validity of the verification test as stated on the calibration certificate must therefore be limited to the application for which testing was performed.

Where necessary, the end user can also commission testing of system configurations which differ from the typical applications. The objective in all cases, however, is for testing to be performed only of the measurement chain configuration which is actually used by the end user. Proposed measurement programmes:

- 1. Calibration of a 3-channel vibration measurement chain for wholebody human vibration exposure
- 2. Calibration of a 3-channel vibration measurement chain for wholebody vibration in buildings
- 3. Calibration of a 3-channel vibration measurement chain for handarm vibration

3.3. General content of the measurement programmes:

Calibration objects:

3-axis (or three 1-axis) accelerometer together with an instrument forming a measurement chain for the measurement and direct display of frequency-weighted accelerations according to EN ISO 8041 (frequency weightings W_b , W_c , W_d , W_f , W_h , W_j , W_k , W_m).

Calibration procedure:

 Mechanical calibration of the measurement chain with sinusoidal signals of defined amplitude and frequency, determining of the transmission factor of the measurement chain as a whole, of the level linearity and of the frequency response

Mechanical calibrations:

- Adjustment to reference frequency: determining and adjustment of the transmission factors of the measurement chain at the reference frequency and acceleration in conjunction with a selected weighting filter per channel,
- Level linearity at the reference frequency: determining of the level linearity for all measurement channels within a measurement range (level range 40 dB),
- Calibration of the frequency response: determining of the deviation of the measurement chain from the desired display value at fixed frequencies (in consideration of the tolerance limit frequencies of the weighting filters) in the relevant specified frequency ranges, for each channel, with one specified weighting within a specified measurement range, comparison with the permissible tolerances.

3.4. Parameters for measurements for mechanical calibration of measurement chains

The data constitute **useful standard methods**; deviations of the weightings are possible, particularly under Point 1.

1. Verification of a 3-channel vibration measurement chain for whole-body human vibration exposure

Weightings according to EN ISO 8041: Reference frequency: Reference acceleration: Mechanical amplitude linearity: Frequency range for the frequency	quency: 15,915 Hz celeration: 1,00 m/s² mplitude linearity: 0,1 m/s² to 10 m/s² at 15,9		5,915 Hz
response: Number of fixed frequencies: Preferred frequency weighting filters:	13 X axis Y axis Z axis	Channel 1 Channel 2 Channel 3	W _d W _d W _k

2. Verification test of a 3-channel vibration measurement chain for wholebody vibration in buildings

Weightings according to EN ISO 8041:WmReference frequency:15,915 HzReference acceleration:1,00 m/s²Mechanical amplitude linearity:0,1 m/s² to 10 m/s² atFrequency range for the frequency0,5 Hz to 160 Hz			5,915 Hz
response: Number of fixed frequencies: Preferred frequency weighting filters:	13 X axis Y axis Z axis	Channel 1 Channel 2 Channel 3	W _m W _m W _m

3. Verification test of a 3-channel vibration measurement chain for hand-arm vibration

Weightings according to EN ISO 8041: Reference frequency: Reference acceleration: Mechanical amplitude linearity: Frequency range for the frequency response:	W _h 79,58 Hz 10,00 m/s ² 1 m/s ² to 100 m/s ² at 79,58 Hz 8 Hz to 2000 Hz		
Number of fixed frequencies: Preferred frequency weighting filters:	13 X axis Y axis Z axis	Channel 1 Channel 2 Channel 3	W _h W _h W _h

Annex: Experts involved

The following experts were involved in the expert discussion during which the position paper was formulated:

Hans-Josef Adamski (RWE Power Aktiengesellschaft) Uli Bamberg (KAN Secretariat) Thomas Groß (DIN Deutsches Institut für Normung e.V.) Dr. Christoph Hecker (German Social Accident Insurance Institution for the metalworking industry) Angela Janowitz (KAN Secretariat) Uwe Kaulbars (Institute for Occupational Safety and Health of the German Social Accident Insurance, IFA) Harald Kihl (RAG Aktiengesellschaft) Michael Mende (SPEKTRA Schwingungstechnik und Akustik GmbH) Eckhard Metze (KAN Secretariat) Dieter Müller (Wölfel Messsysteme Software GmbH & Co. KG) Florian Nachtwey (Deutsche Bahn AG) Bettina Palka (KAN Secretariat) Dr. Jörg Rissler (Institute for Occupational Safety and Health of the German Social Accident Insurance, IFA) Richard Schlombs (Brüel & Kjaer GmbH) Dieter Schultze (ERMESS GmbH) Peter Smigielski (German Social Accident Insurance, DGUV) Holger Steinbock (German Social Accident Insurance Institution for the transport industry) Uwe Struß (German Social Accident Insurance Institution for the metalworking industry) Rainer Weiß (German Social Accident Insurance Institution for the metalworking industry)

In addition, the following experts provided their assistance in drafting the paper: Philipp Begoff (SPEKTRA Schwingungstechnik und Akustik GmbH)

Hans-Günther Usakiewicz (SPEKTRA Schwingungstechnik und Akustik GmbH)